The poor quality of the crystals of (2) and their weak diffraction power are probably responsible for the relatively high value for R. In this case, *DIFABS* (Walker & Stuart, 1983) was used for an absorption correction as the appropriate number of strong reflections with useful setting angles was not found.

For both compounds, data collection: $P2_1$ software; cell refinement: $P2_1$ software; data reduction: *PRADIR* (Jaskólski, 1990); program(s) used to solve structures: *SHELXS86* (Sheldrick, 1990); program(s) used to refine structures: *SHELXL93* (Sheldrick, 1993); molecular graphics: *Stereochemical Workstation* (Siemens, 1989); software used to prepare material for publication: *SHELXL93*.

This study was supported jointly by projects 2 0759 91 01 KBN and S/II.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, bond distances and angles involving non-H atoms for compound (1), bond distances and angles involving H atoms for compound (2), and torsion angles have been deposited with the IUCr (Reference: AB1206). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H. (1981). Acta Cryst. B37, 900-906.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. Antkowiak, R., Antkowiak, W. Z. & Czerwiński, G. (1990). Tetrahe-
- dron, **46**, 2445–2452.
- Antkowiak, W. Z. & Gessner, W. P. (1979). Tetrahedron Lett. 20, 1931–1934.
- Antkowiak, W. Z. & Gessner, W. P. (1984). Tetrahedron Lett. 25, 4045–4048.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Bou-Abdallah, E., Jossang, A., Tadic, D. & Cave, A. (1989). J. Nat. Prod. 52, 273–278.
- Jaskólski, M. (1990). PRADIR. Program for Data Reduction. Adam Mickiewicz Univ., Poznań, Poland.
- Kennard, C. H. L., Smith, G. & Katekar, G. F. (1981). Aust. J. Chem. 34, 1143-1146.
- Koyama, J., Okatani, T., Tagahara, K. & Irie, H. (1989). *Heterocycles*, **29**, 1649–1654.
- Kubicki, M., Borowiak, T. & Antkowiak, W. Z. (1995). Acta Cryst. C51, 458–461.
- Kubicki, M., Borowiak, T., Antkowiak, R. & Antkowiak, W. Z. (1990). J. Crystallogr. Spectrosc. Res. 20, 381–387.
- Kubicki, M., Borowiak, T., Antkowiak, R., Antkowiak, W. Z. & Chruścicki, H. (1994). *Recl Trav. Chim. Pays-Bas.* 113, 383–389.
- Kubicki, M., Borowiak, T., Chruścicki, H. & Antkowiak, W. Z. (1993). J. Crystallogr. Spectrosc. Res. 23, 113-118.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Góttingen, Germany.
- Siemens (1989). Stereochemical Workstation. Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.
- Sørensen, G. O., Mahler, L. & Rastrup-Andersen, N. (1974). J. Mol. Struct. 20, 119-124.
- Tulip, T. H., Corfield, P. W. R. & Ibers, J. A. (1978). Acta Cryst. B34, 1549–1555.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Zerger, R., Rhine, W. & Stucky, G. D. (1974). J. Am. Chem. Soc. 96, 5441-5448.

© 1995 International Union of Crystallography

Printed in Great Britain - all rights reserved

Acta Cryst. (1995). C51, 465-468

A Baccatin III Derivative

Angèle Chiaroni, Daniel Guénard, Françoise Guéritte-Voegelein, Françoise Khuong-Huu, Sandrine Py, Claude Riche and Anne Wahl

Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif sur Yvette CEDEX, France

(Received 12 May 1994; accepted 26 June 1994)

Abstract

The title compound, 3,4,6,8,11-pentahydroxy-4demethyl-1-triethylsiloxy-5,4-epoxymethanotaxen-12one (C₂₆H₄₄O₈Si), has been prepared in the search for new semi-synthetic analogues of taxol. It has been obtained from 2-debenzoyl-4,10-bisdeacetyl-7-

triethylsilyl-baccatin III when treated in an alkaline or acidic medium. The structure was established as part of a contribution to the knowledge of structure-activity relationships. An intramolecular hydrogen bond is established between the hydroxyl groups HO13 and HO4. In addition, a hydrogen-bond network engaging all the hydroxyl groups of the molecule links the different molecules in the crystal.

Comment

Taxol paclitaxel, a diterpene isolated in only low yield from the bark of several species of the Taxus genus (Wani, Taylor, Wall, Coggon & McPhail, 1971) and taxotere, a semi-synthetic analogue, are two of the most promising new drugs studied in the field of cancer chemotherapy (Guénard, Guéritte-Voegelein & Potier, 1993; Rose, 1992; Horwitz, 1992; Therre, 1993). They act by a unique mechanism: both promoting the assembly of tubulin into microtubules and stabilizing the microtubule assembly against depolymerization. The knowledge of the three-dimensional structure of either active or inactive compounds in this series is important in order to establish structure-activity relationships. The title compound, (1), has been obtained by rearrangement of 2-debenzoyl-4,10-bisdeacetyl-7triethylsilyl-baccatin III (2) in an alkaline or acidic medium (Wahl, Guéritte-Voegelein, Guénard, Le Goff & Potier, 1992; Farina & Huang, 1992), 10-deacetylbaccatin III being a natural precursor of taxol isolated from yew leaves (Chauvière, Guénard, Picot, Senilh & Potier, 1981). After introduction of the taxotere-O13side-chain in compound (1), the product thus obtained shows no inhibition of the rate of diassembly $(IC_{50} = 0)$ of tubulin.

The structure of (1) with atomic labelling is shown in Fig. 1. The absolute configuration is that of the taxane tricyclic (A, B, C) ring system (Wani, Taylor, Wall, Coggon & McPhail, 1971).

Fig. 1. Perspective view of the molecule.

The cycloctane ring (B) adopts the most stable boat-chair conformation, as shown by the torsion angles with atoms C1 and C9 as the ends. This ring is *trans*-fused along the C3—C8 bond to the sixmembered ring C, which exibits a chair conformation flattened in C4 [atoms C7 and C4 deviated by 0.76(2) and -0.34(1)Å, respectively, from the mean plane of the other four atoms]. The adjacent tetrahydrofuran ring, fused at C2, C3 and C4, is envelopeshaped with C20 as the flap at -0.52(1)Å from the mean plane formed by atoms C2, C3, C4 and O2. Ring A, 'double-bridged' to the central ring, exhibits the 1,3-diplanar boat conformation with C11 only 0.36(1) and C15 0.98 (1) Å fully above the mean plane of the atoms C13, C12, C14 and C1 [maximum deviation: 0.01 (1) Å]. These conformations are more or less identical for all the baccatin derivatives resolved by X-ray analysis: baccatin V (Castellano & Hodder, 1973), O-cinnamoyltaxicin-I triacetate (Begley, Frecknall & Pattenden, 1984), 14β -hydroxy-10-deacetylbaccatin III (Appendino *et al.*, 1992), *N-tert*-butoxycarbonyl-10-deacetyl-*N*-debenzoyltaxol (Guéritte-Voegelein *et al.*, 1990), 9-dihydro-13-acetyl-baccatin III (Gunawardana *et al.*, 1992).

It can be noted that all the hydroxyl groups are engaged in hydrogen bonds. A strong intramolecular hydrogen bond (2.78 Å) appears between HO13 and the O atom of HO4 with the following characteristics: O13—H···O4 = 2.78 (2), H(O13)···O4 = 1.82 Å; O13—H···O4 = 160.2°.

In the crystal (Fig. 2), the molecules are linked together in the direction of the *a* axis through two hydrogen bonds of 2.82 and 2.94 Å. These hydrogen bonds are established between the hydroxyl groups HO4 and HO5 of one molecule and the carbonyl O9 atom of the next molecule according to the following scheme: O4—H···O9(x - 1, y, z) = 2.82 (2), HO4···O9 = 1.84 Å, O4—H···O9 = 164.4° ; O5—H···O9(x - 1, y, z) = 2.94 (2), HO5···O9 = 2.01 Å, O5—H···O9 = 153.1° .

These chains of molecules are bound to chains of identical molecules of symmetry $(1 - x, \frac{1}{2} + y, 2 - z)$ by means of two other hydrogen bonds, O10— H···O1 and O1—H···O13, according to the following scheme: O10—H···O1H(2 - x, $\frac{1}{2} + y, 2 - z) = 2.88$ (2), H(O10)···O1 = 2.04 Å, O10—H···O1 = 139.5°; O1— H···O13(1 - x, y - $\frac{1}{2}, 2 - z) = 2.66$ (2), H(O1)···O13 = 1.71 Å, O1—H···O13 = 155.7°.

Fig. 2. Packing of the molecules showing the hydrogen-bond network.

Experimental

(1) was obtained as described in the literature (Wahl, Guéritte-Voegelein, Guénard, Le Goff & Potier, 1992; Farina & Huang, 1992). (1) has m.p. 401–403 K (CH₂Cl₂) and $[\alpha]_D = -42$ (EtOH, c = 1.04). Peaks at m/z 535 [M + Na]⁺,

C4 C5

513 $[M + H]^+$ and 495 $[M + H - H_2O]$ can be found in the FAB mass spectrum. The IR spectrum shows absorption at $\nu = 3430, 2960, 1695, 1600 \text{ cm}^{-1}$. The chemical shifts, δ p.p.m., of the protons in the ¹H NMR spectrum (CDCl₃ + 10% C_5D_5N) are: 0.37 (6H, q, J = 8, CH₂Si), 0.78 (9H, t, J = 8, CH₃CH₂Si), 0.85 (3H, s, C16H₃), 0.98 (3H, s, C17H₃), 1.23 $(3H, s, C19H_3), 1.75 (1H, m, C6H\beta), 1.91 (3H, s, C18H_3),$ 2.13 (1H, m, C6H α), 2.41 (1H, dd, J = 9, J' = 15, C14H), 2.58 (1H, dd, J = 1, J' = 15, C14H), 3.49 (1H, d, J = 7, C3H), 3.70 and 3.85 (2H, 2d, J = 10, C20H₂), 3.76 (1H, dd, J = 11, J' = 5, C7H, 4.04 (1H, d, J = 7, C2H), 4.26 (1H, t, J = 9, C5H), 4.34 (1H, d large, J = 9, C13H), 4.93 (1H, s, C10H). The chemical shifts, δ p.p.m., of the C atoms in the ¹³C NMR spectrum (CDCl₃) are: 4.87 (CH₂Si), 6.71 (CH₃CH₂Si), 14.83 (C19), 16.89 (C18), 18.65 (C16), 28.26 (C17), 38.07 (C6), 38.07 (C14), 42.41 (C15), 52.47 (C3), 56.60 (C8), 68.59 (C13), 73.61 (C5), 71.86 (C7), 74.46 (C20), 75.84 (C1), 76.48 (C10), 84.51 (C4), 84.92 (C2), 139.32 (C11), 141.12 (C12), 211.49 (C9).

Cu $K\alpha$ radiation

Cell parameters from 25

 $\lambda = 1.5418 \text{ Å}$

reflections

 $\theta = 13.4 - 22.2^{\circ}$

 $\mu = 1.03 \text{ mm}^{-1}$

T = 293 K

Prism

Crystal data

C₂₆H₄₄O₈Si $M_r = 512.72$ Monoclinic $P2_1$ a = 8.323 (4) Å b = 10.569 (5) Å c = 17.022 (10) Å $\beta = 100.15 (2)^{\circ}$ $V = 1473.9 (13) \text{ Å}^3$ Z = 2 $D_x = 1.16 \text{ Mg m}^{-3}$

Nonius CAD-4 diffractom-
eter
$\theta/2\theta$ scans
Absorption correction:
none
2766 measured reflections
2674 independent reflections
1630 observed reflections
$[I > 2.5\sigma(I)]$

Refinement

C1

C2

C3

C4	0.4554 (13)	-0.0163 (14)	0.7747 (7)	0.047 (11)
C5	0.3929 (13)	0.0032 (14)	0.6865 (9)	0.054 (13)
C6	0.5218 (13)	-0.0052 (17)	0.6354 (8)	0.056 (14)
C7	0.6778 (13)	0.0625 (15)	0.6691 (7)	0.053 (12)
C8	0.7618 (13)	-0.0040 (13)	0.7481 (7)	0.045 (11)
C9	0.9228 (11)	0.0660 (11)	0.7784 (6)	0.036 (9)
C10	0.9349 (11)	0.1860 (12)	0.8330 (6)	0.036 (9)
C11	0.8630(11)	0.1721 (12)	0.9086 (6)	0.035 (9)
C12	0.7356 (12)	0.2423 (12)	0.9166 (7)	0.040 (10)
C13	0.6175 (14)	0.2139 (17)	0.9723 (8)	0.060 (14)
C14	0.6232 (14)	0.0724 (16)	0.9955 (8)	0.058 (13)
C15	0.9073 (11)	0.0581 (12)	0.9659 (6)	0.036 (9)
C16	1.0429 (13)	-0.0259 (12)	0.9452 (8)	0.051 (12)
C17	0.9750 (15)	0.1107 (14)	1.0475 (7)	0.054 (13)
C18	0.6803 (17)	0.3622 (15)	0.8631 (10)	0.068 (15)
C19	0.8045 (14)	-0.1407 (14)	0.7299 (8)	0.055 (13)
C20	0.4331 (14)	-0.1443 (14)	0.8085 (6)	0.046 (11)
01	0.7820 (9)	-0.1210 (10)	1.0167 (5)	0.056 (9)
02	0.5346(11)	-0.1429 (11)	0.8863 (5)	0.065 (10)
04	0.3753 (9)	0.0781 (12)	0.8168 (6)	0.064 (10)
05	0.2616 (10)	-0.0798 (12)	0.6550 (5)	0.064 (10)
07	0.7870 (9)	0.0609 (9)	0.6145 (5)	0.062 (9)
09	1.0440 (8)	0.0325 (10)	0.7546 (5)	0.052 (8)
010	1.0986 (9)	0.2254 (9)	0.8459 (5)	0.053 (9)
013	0.4630 (10)	0.2522 (12)	0.9393 (6)	0.069 (11)
Si	0.8044 (6)	0.1623	0.5424 (3)	0.099 (6)
C21	1.0141 (12)	0.1475 (15)	0.5218 (8)	0.083 (5)
C22	1.0581 (17)	0.221 (2)	0.4567 (10)	0.097 (6)
C23	0.761 (2)	0.3239 (9)	0.5752 (12)	0.216 (18)
C24	0.885 (4)	0.383 (2)	0.634 (2)	0.200 (16)
C25	0.6503 (19)	0.1201 (18)	0.4530 (8)	0.23 (2)
C26	0.661 (4)	0.0049 (26)	0.4196 (18)	0.201 (16)

Table 2. Selected geometric parameters (Å, °)

$\beta = 100$).15 (2)°	Pris	sm		C1C2	1.50(2)	C909	1.20(1)
V = 147	73.9 (13) $Å^3$	0.3	$0 \times 0.20 \times 0$.13 mm	C1-C14	1.55 (2)	C10-C11	1.52 (1)
7 = 2		Col	ourless		C1-C15	1.56(1)	C10-010	1.40(1)
ב ב 1	16 Mg m^{-3}	00.	curress		C101	1.44 (2)	C11—C12	1.32 (2)
$D_{x} = 1.$	to wig m				C2—C3	1.56 (2)	C11—C15	1.55 (2)
D	11				C202	1.43 (2)	C12—C13	1.51 (2)
Data co	ollection				C3—C4	1.56(1)	C12C18	1.58 (2)
Nonius	CAD-4 diffracto	$m - R_{int}$	= 0.079		C3—C8	1.57 (2)	C13—C14	1.55 (2)
eter		θ_{ma}	$x = 65.68^{\circ}$		C4C5	1.51 (2)	C13013	1.37 (2)
ADA sc	ans	h ==	$-9 \rightarrow 9$		C4C20	1.49 (2)	CIS-CI6	1.53 (2)
Abcom	tion correction:	k –	0 12		C404	1.46 (2)	C15C17	1.51 (2)
Ausoipi	tion contection.	к —	$0 \rightarrow 12$		C_{5}	1.50(2)	07 8	1.44 (1)
none		1 =	$0 \rightarrow 20$		C303 C6 C7	1.43 (2)	Si_C21	1.00(1)
2766 m	easured reflection	ons 3 st	tandard reflect	ions	C0C8	1.50 (2)	Si_C23	1.85(1)
2674 in	dependent reflec	tions f	requency: 166	min	C7-07	1.37(2)	Si-C25	1.86(1)
1630 ot	oserved reflection	ns i	ntensity decay	: none	C8C9	1.54 (2)	C21—C22	1.45 (2)
[I >	$2.5\sigma(D)$		5 5		C8-C19	1.53 (2)	C23C24	1.45 (4)
(r /	2.50(1)]				C9—C10	1.56(2)	C25—C26	1.45 (3)
Refinem	nent				C2_C1_C14	1144(10)	C10-C9-09	117.9 (9)
D					$C_2 - C_1 - C_1 = C_1$	1134(10)	C9-C10-C11	115.5 (9)
Refinen	nent on F	$(\Delta$	$(\sigma)_{\rm max} = 0.04$	• •	C2-C1-O1	105.9 (9)	C9-C10-010	107.0 (8)
R = 0.1	05	Δho	$p_{max} = 0.53 \ e$	A_,	C14-C1-C15	107.9 (10)	C11-C10-O10	114.4 (9)
wR = 0	.145	$\Delta \rho$	$p_{min} = -0.56 \epsilon$	ė Å ^{−3}	C14	108.7 (10)	C10-C11-C12	118.4 (10)
S = 1.22	5	Ext	tinction correct	tion: none	C15-C1-O1	106.2 (9)	C10-C11-C15	121.5 (9)
1615 re	flections	Ato	mic scatterin	a factors	C1—C2—C3	120.5 (10)	C12—C11—C15	118.5 (10)
285 nor	ameters	4	From Internati	onal Tables	C1-C2-O2	109.6 (10)	C11C12C13	125.1 (11)
205 pai	aniciers	1		unai rabies	C3-C2-O2	105.9 (9)	C11—C12—C18	123.2 (11)
H-atom	parameters not	J	or x-ray Crys	tallography	$C_2 - C_3 - C_4$	103.5 (9)	C13 - C12 - C18	111.4 (11)
refine	ed	((1974, Vol IV,	Table 2.2 <i>B</i>)	(2-(3-(8)))	112.5 (9)	C12 - C13 - C14	110.0(11)
w = 1/[$\sigma^2(F) + 0.16323$	$30F^{2}$]			C_{4}^{-} C_{5}^{-} C_{6}^{-}	117.0 (10)	C12 = C13 = 013	112.0 (12)
					C_{3} C_{4} C_{20}	103 2 (10)	C_{1} - C_{14} - C_{13}	119.0 (11)
Table 1	1. Fractional a	tomic coor	dinates and	isotropic or	C3C4O4	100.9 (9)	C1-C15C11	105.1 (9)
епи	ivalent isotron	ic displacer	nent narame	ters $(Å^2)$	C5-C4-C20	117.5 (11)	C1-C15-C16	112.1 (9)
cyu	iraicin isonopi	ie aispiaeen	nem parame		C5-C4-O4	106.7 (10)	C1-C15-C17	113.2 (10)
$U_{\rm irr}$ fo	or C21–C26: $U_{eq} =$	$= (1/3) \sum_i \sum_j U_j$	liia*a*ai.ai for	other atoms.	C20-C4-O4	109.4 (10)	C11-C15-C16	114.2 (9)
- 150 - 1	, vu	· / - / - / / 0	v [j [j j j j j -	•	C4C5C6	114.3 (11)	C11—C15—C17	107.5 (9)
	x	у	Ζ	$U_{\rm iso}/U_{\rm eq}$	C4C5O5	113.3 (11)	C16—C15—C17	104.8 (9)
CI	0.7446 (12)	-0.0157 (13)	0.9630 (7)	0.044 (11)	C6-C5-O5	108.9 (11)	C4C20O2	104.6 (10)
C2	0.6801 (12)	-0.0723 (14)	0.8826 (6)	0.041 (11)	C5C6C7	114.1 (11)	C2	109.1 (9)
C3	0.6388 (11)	0.0138 (12)	0.8073 (6)	0.037 (10)	С6—С7—С8	109.8 (11)	C/07Si	129.2 (8)

C6-C7-07	110.9 (11)	07-Si-C21	107.2 (5)
C8-C7-07	108.6 (10)	07—Si—C23	109.1 (6)
C3-C8-C7	104.7 (9)	07—Si—C25	108.2 (6)
C3-C8-C9	110.9 (9)	C21-Si-C23	112.1 (7)
C3-C8-C19	116.4 (10)	C21-Si-C25	111.3 (7)
C7—C8—C9	107.6 (10)	C23—Si—C25	109.0 (8)
C7—C8—C19	109.4 (10)	Si-C21-C22	118.3 (11)
C9-C8-C19	107.6 (10)	Si-C23-C24	117.1 (16)
C8-C9-C10	123.4 (9)	Si—C25—C26	117.2 (15)
C8-C9-09	118.5 (10)		
C15-C1-C2-C3	-59.3 (11)	C3-C2-O2-C20	21.0 (10)
C1C2C3C8	109.7 (12)	C2-02-C20-C4	-36.5(11)
C2—C3—C8—C9	-77.7 (11)	O2-C20-C4-C3	35.8 (11)
C3-C8-C9-C10	-27.4 (9)	C20-C4-C3-C2	-22.7 (10)
C8-C9-C10-C11	53.4 (10)	C4—C3—C2—O2	2.0 (10)
C9-C10-C11-C15	49.8 (10)	C8-C3-C4-C5	-29.7(10)
C10-C11-C15-C1	-115.7 (11)	C3-C4-C5-C6	25.1 (11)
C11—C15—C1—C2	65.1 (10)	C4-C5-C6-C7	-43.4 (12)
CI4-CI-CI5-CII	-62.8 (11)	C5-C6-C7-C8	65.7 (12)
C1-C15-C11-C12	49.7 (10)	C6—C7—C8—C3	-63.8 (11)
C15-C11-C12-C13	-6.3 (11)	C7—C8—C3—C4	46.9 (10)
C11-C12-C13-C14	-20.9 (12)	C20-C4-C5O5	26.2 (11)
C12-C13-C14-C1	1.7 (11)	04—C4—C5—O5	-96.9 (12)
C13-C14-C1-C15	39.9 (11)		

Because of the large thermal motion of the triethylsilyl group, the three ethyl chains have been refined with constraints on bond distances and angles, and have been kept isotropic, conferring to the high *R* factor and consequently a lack of precision in the results. However, all the H atoms of the hydroxyl groups were located in successive difference Fourier maps, allowing the building of the hydrogen-bond network. Their positional parameters were fixed (C—H = 1.00 Å). Isotropic temperature factors of the H atoms were assigned as $1.10 \times U_{eq}$ of the bonded atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Data reduction: NONIUS (Riche, 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: R3M (Riche, 1983), ORTEP (Johnson, 1965). Software used to prepare material for publication: ACTACIF (Riche, 1992).

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: PA1126). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Appendino, G., Gariboldi, P., Gabetta, B., Pace, R., Bombardelli, E. & Viterbo, D. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 2925–2929.
- Begley, M. J., Frecknall, E. A. & Pattenden, G. (1984). Acta Cryst. C40, 1745-1747.
- Castellano, E. E. & Hodder, O. J. R. (1973). Acta Cryst. B29, 2566-2570.
- Chauvière, G., Guénard, D., Picot, F., Senilh, V. & Potier, P. (1981). C. R. Acad. Sci. Paris Ser. II, 294, 501–503.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Farina, V. & Huang, S. (1992). Tetrahedron Lett. 33, 3979-3982.
- Guénard, D., Guéritte-Voegelein, F. & Potier, P. (1993). Acc. Chem. Res. 26, 160–167.
- Guéritte-Voegelein, F., Guénard, D., Mangatal, L., Potier, P., Guilhem, J., Cesario, M. & Pascard, C. (1990). Acta Cryst. C46, 781-784.
- Gunawardana, G. P., Premachandran, U., Burres, N. S., Whittern, D. N., Henry, R., Spanton, S. & McAlpine, J. B. (1992). J. Nat. Prod. 55, 1686–1689.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Horwitz, S. B. (1992). TIPS, 13, 134-136.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Mangatal, L., Adeline, M. T., Guénard, D., Guéritte-Voegelein, F. & Potier, P. (1989). *Tetrahedron*, 42, 4177–4190.
- Riche, C. (1983). R3M. Représentation et Manipulation de Modèles Moléculaires. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.
- Riche, C. (1989). NONIUS. Program for Data Reduction for Nonius CAD-4 Diffractometer. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.
- Riche, C. (1992). ACTACIF. Logiciel de préparation des fichiers CIF. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.
- Rose, W. C. (1992). Anticancer Drugs 3, 311-319.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Therre, H. (1993). Biofutur, pp. 22-25.
- Wahl, A., Guéritte-Voegelein, F., Guénard, D., Le Goff, M. T. & Potier, P. (1992). *Tetrahedron*, 48, 6965–6974.
- Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. & McPhail, A. T. (1971). J. Am. Chem. Soc. 93, 2325–2327.

Acta Cryst. (1995). C51, 468-471

The *endo-endo-syn* Diels–Alder Diadduct of Tetrachlorodimethoxycyclopentadiene with 1,6-Dioxacyclodeca-3,8-diene

J. G. GARCIA

Lawrence Berkeley Laboratory, UC Berkeley, MS 55-121, Berkeley, CA 94720, USA

F. R. FRONCZEK

Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 31 January 1994; accepted 25 July 1994)

Abstract

In the title compound, *endo-endo-syn*-1,7,8,9,10,16,17,-18-octachloro-19,19,20,20-tetramethoxy-4,13-dioxapentacyclo[14.2.1.1^{7,10}.0^{2,15}.0^{6,11}]icosa-8,17-diene, C₂₂- $H_{24}Cl_8O_6$, the ten-membered ring adopts a chair-chair conformation. The near-zero endocyclic torsion angles of this ring at the ring fusion bonds have values of 0.0 (6) and -0.8 (4)°. The norbornene C=C bonds have lengths 1.320 (4) and 1.311 (5) Å. The four dioxolane O-C bonds have an average length of 1.413 (2) Å.

Comment

The crystal structures of a number of Diels-Aldersubstituted cycloocta(e)nes and cyclohexa(e)nes have